Simple universal bounds for Chebyshev-type quadratures
نویسنده
چکیده
A Chebyshev-type quadrature for a probability measure σ is a distribution which is uniform on n points and has the same first k moments as σ. We give bounds for the smallest possible n required to achieve a certain degree k. In contrast to previous results of this type, our bounds use only simple properties of σ and are thus applicable in wide generality. In particular, it is shown that whenever σ has bounded density on a finite interval, n may increase at most exponentially with k. Examples are given illustrating the tightness of our bounds, and applications are given to special local constructions on the sphere and cylinder and to an apparently new result on Gaussian quadrature. We also introduce the concept of random Chebyshev-type quadratures, the case in which nodes are chosen by independent random samples from σ. The concept is discussed and some preliminary results are proven. These results were recently applied to understand how well can a Poisson process approximate certain continuous distributions. We conclude with a list of open questions.
منابع مشابه
Solving singular integral equations by using orthogonal polynomials
In this paper, a special technique is studied by using the orthogonal Chebyshev polynomials to get approximate solutions for singular and hyper-singular integral equations of the first kind. A singular integral equation is converted to a system of algebraic equations based on using special properties of Chebyshev series. The error bounds are also stated for the regular part of approximate solut...
متن کاملError estimates for Gauss–Turán quadratures and their Kronrod extensions
We study the kernel Kn,s(z) of the remainder term Rn,s( f ) of Gauss–Turán–Kronrod quadrature rules with respect to one of the generalized Chebyshev weight functions for analytic functions. The location on the elliptic contours where the modulus of the kernel attains its maximum value is investigated. This leads to effective L∞-error bounds of Gauss–Turán–Kronrod quadratures. Following Kronrod,...
متن کاملRational Szego quadratures associated with Chebyshev weight functions
In this paper we characterize rational Szegő quadrature formulas associated with Chebyshev weight functions, by giving explicit expressions for the corresponding para-orthogonal rational functions and weights in the quadratures. As an application, we give characterizations for Szegő quadrature formulas associated with rational modifications of Chebyshev weight functions. Some numerical experime...
متن کاملOn Multivariate Chebyshev Polynomials and Spectral Approximations on Triangles
In this paper we describe the use of multivariate Chebyshev polynomials in computing spectral derivations and Clenshaw–Curtis type quadratures. The multivariate Chebyshev polynomials give a spectrally accurate approximation of smooth multivariate functions. In particular we investigate polynomials derived from the A2 root system. We provide analytic formulas for the gradient and integral of A2 ...
متن کاملOn Chebyshev-Type Quadratures
According to a result of S. N. Bernstein, «-point Chebyshev quadrature formulas, with all nodes real, do not exist when n = 8 or n ä 10. Modifications of such quadrature formulas have recently been suggested by R. E. Barnhill, J. E. Dennis, Jr. and G. M. Nielson, and by D. Kahaner. We establish here certain empirical observations made by these authors, notably the presence of multiple nodes. We...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Approximation Theory
دوره 162 شماره
صفحات -
تاریخ انتشار 2010